# Industrial Electronics

Prepared By: Ajit Singh, Lecturer

### The p-n Junction

- A p-n junction is formed when p-type semiconductor is brought in metallurgical or physical contact with n-type semiconductor.
- p-region has more holes concentration.
- n- region has more electrons concentration.

### The p-n Junction

- In p-region holes are majority carriers and electrons are minority carriers.
- In n-region electrons are majority carriers and holes are minority carriers.

### **Depletion Layer**





# Thyristor

- The term Thyristor denotes a family of semiconductor devices used for power control in DC and AC system.
- Thyristor is a family of semiconductor devices like SCR, TRIAC, Diac, Slicon controlled Switch (SCS), Programmable Unijunction Transistor (PUT) etc.
- The use of SCR is so vast that over the years, the word thysristor has become synonymous with SCR.

# Thyristor

- Thyristor has characteristics similar to a thyratron tube.
- The name Thyristor is derived from combination of THYRatron and transISTOR.
- Thyristor:
  - Constitutes three or more p-n junctions.
  - Has two stable states, an ON state and an OFF state.
  - Can change its state from one to another.

### SCR (Silicon Controlled Rectifier)







# Thyrister (SCR)

- It is four layer, three junction, p-n-p-n semiconductor switching device.
- It has three terminals; Anode, Cathode and Gate.
- Gate terminal is usually kept near cathode terminal.
- SCRs of voltage rating 10 kV and rms current rating of 3000A with corresponding power handling capacity of 30MW are available.

# Thyrister (SCR)

- SCR is so called because silicon is used for its construction and used as controlled rectifier.
- Unlike diode, a thyristor also blocks the current flow from anode to cathode until it is triggered by gate signal.



- Forward Blocking Mode
  - Anode is made +ve w.r.t. Cathode , Gate open.
  - $\circ$  J<sub>1</sub>, J<sub>3</sub> are forward biased, J<sub>2</sub> is reverse biased.
  - Forward leakage current flows.
  - SCR offers high impedance.
  - It can be treated as an open switch.

- Forward Conduction Mode
  - When anode to cathode forward voltage is increased, Junction J<sub>2</sub> will have an avalanche breakdown at Forward Break over Voltage V<sub>BO.</sub>
  - Voltage drop across the thyristor is of the order of 1 to 2 V, depending on SCR rating.
  - Anode current is limited by load impedance.
  - Thyristor acts as a closed switch.

- Reverse Blocking Mode
  - Cathode is made +ve w.r.t. Anode, Gate open.
  - $\circ$  J<sub>1</sub>, J<sub>3</sub> are reverse biased, J<sub>2</sub> is forward biased.
  - Device behaves as two diodes connected in series with reverse voltage applied.
  - Reverse leakage current of few milli amperes flow.
  - At reverse breakdown voltage V<sub>BR</sub>, an avalanche occurs at J<sub>1</sub> and J<sub>3.</sub>
  - Reverse current increases rapidly.
  - Large current with  $V_{BR}$  gives rise to more losses.
  - This may lead to damage of SCR.

- Gate Triggering
  - Simple, reliable and efficient method to turn on the SCR and is mostly used.
  - Positive gate voltage between gate and cathode is applied.
  - Charges are injected in to inner p layer
  - The voltage at which forward break over occurs, is reduced.
  - Higher the gate current, lower is the forward break over voltage.
  - Typical gate current is 20 to 200 mA.

#### • Gate Triggering Continued...

- With positive gate current, p layer is flooded with electrons from cathode as n layer is heavily doped as compared to gate p layer.
- Some of these electrons reach junction J<sub>2.</sub>
- Due to this, width of depletion layer near junction J<sub>2</sub> is reduced and it breaks down at lower voltage.
- Reverse biased junction  $J_2$  no longer exists.
- If gate current is removed, anode to cathode current remains unaffected.



#### • Latching Current:

 Minimum value of anode current which SCR must attain during turn on process, to maintain conduction when gate signal is removed.

#### Holding Current:

- Minimum value of anode current below which it must fall for turning off the thyristor.
- Latching current is associated with turn on process and Holding current with turn off process



CIICUM - 1

where

and

In the off-state of a transistor, collector current  $I_C$  is related to emitter current  $I_E$  as

$$I_C = \alpha I_E + I_{CBO}$$

where  $\alpha$  is the common-base current gain and  $I_{CBO}$  is the common-base leakage current of collector-base junction of a transistor.

For transistor  $Q_1$  in Fig. current  $I_{C1}$ . Therefore, for  $Q_1$ , (i)

$$\begin{split} I_{C1} &= \alpha_1 I_a + I_{CBO1} \\ \alpha_1 &= \text{common-base current gain of } Q_1 \\ I_{CBO1} &= \text{common-base leakage current of } Q_1. \end{split}$$

Similarly, for transistor  $Q_2$ , the collector current  $I_{C2}$  is given by

where

 $I_{C2} = \alpha_2 I_k + I_{CBO2}$   $\alpha_2 = \text{common-base current gain of } Q_2$   $I_{CBO2} = \text{common-base leakage current of } Q_2$  $I_k = \text{emitter current of } Q_2.$ 

and

The sum of two collector currents given by Eqs. (i) and (ii) is equal to the external circuit current  $I_a$  entering at anode terminal A.

or

:. 
$$I_a = I_{C1} + I_{C2}$$
  
 $I_a = \alpha_1 I_a + I_{CBO1} + \alpha_2 I_k + I_{CBO2}$ 
(iii)

··· (ii)

When gate current is applied, then  $I_k = I_a + I_g$ . Substituting this value of  $I_k$  in Eq. (iii) gives

$$\begin{split} I_{a} &= \alpha_{1} I_{a} + I_{CBO1} + \alpha_{2} (I_{a} + I_{g}) + I_{CBO2} \\ I_{a} &= \frac{\alpha_{2} I_{g} + I_{CBO1} + I_{CBO2}}{1 - (\alpha_{1} + \alpha_{2})} \end{split}$$

or

- For a silicon transistor, current gain α is very low at low emitter current.
- With an increase in emitter current, α builds up rapidly.
- With  $I_g=0$ ,  $(\alpha_1 + \alpha_2)$  is very low.
- If emitter current is increased so that ( $\alpha_1 + \alpha_2$ ) approaches unity,  $I_a$  would tend to become infinity.



### DIAC

- When voltage across the terminals exceeds the breakover voltage, the four out of five layers conduct.
- Name is derived from Dlode that can work on AC.
- It's terminals are interchangeable.
- Turn on voltage is around 30 V.
- While conducting, voltage drop across it is around 3 V





# **Modes of Operation**

### T<sub>2</sub> Positive and Gate Positive



# T<sub>2</sub> Positive and Gate Positive

- Junction p<sub>1</sub> n<sub>1</sub> and p<sub>2</sub> n<sub>2</sub> are forward biased.
- Junction  $n_1 p_2$  is reverse biased.
- Gate current injects sufficient carriers in p<sub>2</sub> layer and Junction n<sub>1</sub> - p<sub>2</sub> breaks down.
- Device is more sensitive in this mode.

### T<sub>2</sub> Positive and Gate Negative



# T<sub>2</sub> Positive and Gate Negative

- Junction  $p_1 n_1$  and  $p_2 n_2$  are forward biased.
- Junction  $n_1 p_2$  is reverse biased.
- Gate current flows through  $p_2 n_3$  junction.
- Initially TRIAC current flows through p<sub>1</sub> n<sub>1</sub> p<sub>2</sub> n<sub>3.</sub>
- Due to conduction of p<sub>1</sub> n<sub>1</sub> p<sub>2</sub> n<sub>3</sub>, the potential of left side of the layer p<sub>2</sub> rises towards anode potential of T<sub>2</sub>.

# T<sub>2</sub> Positive and Gate Negative

- Potential gradient exists between across the layer p<sub>2.</sub>
- Left side being at higher potential, the current is established in p<sub>2</sub> layer from left to right.
- >  $p_1 n_1 p_2 n_2$  start conducting like normal SCR.
- >  $p_1 n_1 p_2 n_3$  may be regarded as pilot SCR.
- Device is less sensitive in this mode, so require more gate current.

### T<sub>2</sub> Negative and Gate Positive



# T<sub>2</sub> Negative and Gate Positive

- Gate current forward biases the p<sub>2</sub> n<sub>2</sub> junction.
- Layer  $n_2$  injects electrons in  $p_2$  layer.
- Reverse biased junction  $n_1 p_1$  breaks down.
- $P_2 n_1 p_1 n_4$  is completely turned on.
- As the TRIAC is turned on by remote gate n<sub>2</sub> the device is less sensitive.

### T2 and Gate is Negative


### T2 and Gate is Negative

- n<sub>3</sub> acts as remote gate.
- Gate current flows from p<sub>2</sub> to n<sub>3</sub> as in normal Thyristor.
- Reverse biased junction  $n_1 p_1$  breaks down.
- Structure  $p_2 n_1 p_1 n_4$  is turned on.
- Device is more sensitive.

### Quadracs

- Quadracs are a special type of thyristor which combines a "diac" and a "triac" in a single package.
- The diac is the triggering device for the triac.
- Quadracs eliminate the need to buy and assemble discrete parts.
- Quadracs are used in lighting control, speed control, and temperature modulation control applications.

#### Heat Sinks

- Small voltage drop exists at Thyristor Junctions.
- With flow of current, heat is developed at junctions.
- Junction temperature may increase beyond permissible limits.
- It may damage the Thyristor.
- To keep junction temperature within limits, Thyristor are mounted on Heat Sinks.

#### Thermal Ohm's Law

$$P21 = \frac{T2 - T1}{\theta 21}$$

- Θ<sub>21</sub> = Thermal Resistance between point 2 and 1
- $P_{21}$  = Heat flow from point 2 and 1, W
- $T_2$  = Temperature of point 2, °C
- $T_1$  = Temperature of point 1, °C

#### **Thermal Equivalent Circuit**



### **Thermal Equivalent Circuit**

- P<sub>av</sub>: average power loss in the device
- T<sub>j</sub>: Temperature of Junction
- T<sub>c</sub>: Temperature of Case
- T<sub>s</sub>: Temperature of Sink
- T<sub>a</sub>: Ambient Temperature
- Θ<sub>jc</sub>: Thermal Resistance from junction to case
- $\Theta_{cs}$  : Thermal Resistance from case to sink
- Θ<sub>sA</sub> : Thermal Resistance from sink to atmosphere

- Normally  $\Theta_{jc}$  and  $\Theta_{cs}$  are specified by the manufacturer.
- Once P<sub>av</sub> is known, the required Θ<sub>sA</sub> is calculated for known T<sub>a.</sub>
- Next step is to choose a heat sink and its size which would meet the thermal resistance requirement.
- Copper and Aluminum heat sinks are preffered.







# **Thyristor Tiggering**

## Forward Voltage Triggering

- When anode cathode increases beyond the forward break over voltage V<sub>BO</sub>, reverse biased junction J<sub>2</sub> breaks down due to Avalache breakdown.
- Anode current is limited by load impedance only.

## Gate Triggering

- Simple, reliable and efficient method to turn on the SCR and is mostly used.
- Positive gate voltage between gate and cathode is applied.
- Charges are injected in to inner p layer
- The voltage at which forward break over occurs, is reduced.
- Higher the gate current, lower is the forward break over voltage.
- Typical gate current is 20 to 200 mA.

## Gate Triggering

- With positive gate current, p layer is flooded with electrons from cathode as n layer is heavily doped as compared to gate p layer.
- Some of these electrons reach junction J2.
- Due to this, width of depletion layer near junction J2 is reduced and it breaks down at lower voltage.
- Reverse biased junction J2 no longer exists.
- If gate current is removed, anode to cathode current remains unaffected.

# dv/dt Triggering

- Reverse biased junction J<sub>2</sub> has characteristics similar to capacitor due to charges existing across the junction.
- If forward voltage is suddenly applied, the charging current through junction capacitance may turn on the SCR.

$$ic = \frac{dQ}{dt} = C\frac{dv}{dt}$$

# dv/dt Triggering

- If rate of rise of forward voltage dv/dt is high, the charging current i<sub>c</sub> would be more.
- This charging current plays the role of gate current.
- It may turn on the SCR even though gate signal is zero, at lower anode voltages.

### **Temperature Triggering**

- Applied voltage, associated with leakage current raises the temperature of the junction J<sub>2.</sub>
- With increase in temperature, width of depletion layer decreases.
- This further leads to more leakage current and therefore more junction temperature.

#### **Temperature Triggering**

 With the cumulative process, at some high temperature (Within the safe limits), depletion layer of reverse biased junction vanishes and device gets turned on.

## Light Triggering



# Light Triggering

- Light triggered SCRs has a recess made in the inner p-layer.
- When this recess is irradiated, free charge carriers are generated.
- With sufficient light at recess, the forward biased SCR is turned on.
- Such a thyristor is called Light Activated SCR (LASCR).
- LASCR may be triggered with a light source or with gate signal.

# **Triggering Circuits**

#### **Resistance Triggering**



#### **Resistance Triggering**

- Simplest and most economical.
- Limited firing angle control (0-90°).
- The function of R<sub>1</sub> is to limit the gate current to safe value, as R<sub>2</sub> is varied.
- R<sub>1</sub> should be greater than or equal to V<sub>m</sub>/I<sub>gm</sub>. Where V<sub>m</sub> is maximum source voltage and I<sub>gm</sub> is maximum permissible gate current.







#### **RC Half Wave Triggering Circuit**



## **RC Half Wave Triggering Circuit**

- By varying the value of R, firing angle can be controlled from 0 – 180°.
- In negative half, the capacitor charges through D2 with lower plate positive to voltage V<sub>m</sub>.
- In positive half, capacitor C begins to charge through resistance R.
- When capacitor voltage reaches V<sub>gt</sub>, SCR is fired.
- $[V_c = V.(1 e^{(-t/RC)})]$

Diode D<sub>1</sub> is used to prevent the breakdown of cathode to gate junction through D<sub>2</sub>, during negative half cycle.





### **RC Full Wave Triggering Circuit**







# Unijunction Transistor (UJT)



- UJT is made of an n-type silicon base to which p-type emitter is embedded.
- n-type base is lightly doped, whereas p-type emitter is heavily doped.
- Between bases B<sub>1</sub> and B<sub>2</sub>, unijunction behaves like an ordinary resistance.
- When  $V_{BB}$  is applied between  $B_1$  and  $B_2$

$$V_{AB1} = \frac{V_{BB}}{R_{B1} + R_{B2}} \cdot R_{B1} = \frac{R_{B1}}{R_{B1} + R_{B2}} \cdot V_{BB} = \eta \ V_{BB}$$
## $\eta = \frac{RB1}{RB1 + RB2}$ is called the intrinsic standoff ratio.

- Typical values of η are 0.51 to 0.82.
- Inter base resistance RBB = RB1 + RB2 is of the order of 5 10 K $\Omega$ .
- Emitter is nearer to B<sub>2</sub>, resistance R<sub>B2</sub> is less than R<sub>B1</sub>.







- As long as emitter voltage V<sub>e</sub> < ηV<sub>BB</sub>, the E-B<sub>1</sub> junction is reverse biased and emitter current I<sub>e</sub> is negative.
- At point S, drop across  $R_E$  is zero and  $I_e = 0$ .
- When  $Ve = \eta V_{BB} + V_D$  at point B,  $E-B_1$  junction gets forward biased.
- VD is forward voltage drop across the junction E-B<sub>1</sub> (ususally 0.5V).
- V<sub>p</sub> and I<sub>p</sub> are called peak voltage and peak current respectively.

- At peak point B, the p-emitter begins to inject holes in to lower base region B<sub>1</sub>.
- Resistance R<sub>B1</sub> suddenly decreases.
- Potential of eta point A drops.
- As  $V_{EE}$  is constant, fall of  $V_e$  gives rise to more emitter current  $I_e$  (=( $V_{EE}$ - $V_e$ )/ $R_E$ ).
- Increased I<sub>e</sub> injects more holes, further reducing R<sub>B1</sub> and so on.

- Regenerative effect continues till  $R_{B1}$  has dropped to small value (from about  $4K\Omega$  to around 2 to  $25\Omega$ ).
- Emitter current is limited by external resistance R<sub>E</sub> only.
- At valley point (point C), UJT reaches the on state.
- At point C, entire base region is saturated and R<sub>B1</sub> can not decrease any more.

- Any increase in V<sub>e</sub> is accompanied by increase in I<sub>e</sub>.
- Between point B and C, V<sub>e</sub> Falls and I<sub>e</sub> increases.
- UJT, therefore, exhibits negative resistance between point B and C.

### **UJT Relaxation Oscillator**





- UJT is highly efficient switch.
- Switching time is of the range of nano seconds.
- Because of negative resistance characteristics,
  UJT can be used as relaxation oscillator.
- External resistance R<sub>1</sub> and R<sub>2</sub> are small as compared to internal resistances R<sub>B1</sub> and R<sub>B2</sub>.
- On application of V<sub>BB</sub>, capacitor C begins to charge through R, exponentially towards V<sub>BB</sub>.

## Commutation of Thyristor

# Class A Commutation (Load Commutation)









# Class B Commutation (Resonant Pulse Commutation)



### Class C Commutation (Complementry Commutation)



R  $R_2$ Vs  $v_c +$  $\nu_{T_2} = \nu_c$ 1= i1+ic

### Class D Commutation: Impulse Commutation



# Class E Commutation: External Pulse Commutation



### **Class F or Line Commutation**





### Series and Parallel Operation

string efficiency

Actual voltage/current rating of the whole string

[Individual voltage/current rating of one SCR ] [Number of SCRs in the string]

DRF = 1 - string efficiency

### **Series Operation**





### **Parallel Operation**





### **Applications of Thyristor**

### Light intensity Control


#### Fan Speed Cntrol



## Speed Control of DC Motor



## **Battery Charger**



#### Automatic Street Light



#### **SCR Protection**

# dv/dt Protection (Snubber Ckt)



#### di/dt Protection



#### di/dt Protection



## **Complete Protection Ckt.**







